Metamath Proof Explorer


Theorem trlfset

Description: The set of all traces of lattice translations for a lattice K . (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses trlset.b B=BaseK
trlset.l ˙=K
trlset.j ˙=joinK
trlset.m ˙=meetK
trlset.a A=AtomsK
trlset.h H=LHypK
Assertion trlfset KCtrLK=wHfLTrnKwιxB|pA¬p˙wx=p˙fp˙w

Proof

Step Hyp Ref Expression
1 trlset.b B=BaseK
2 trlset.l ˙=K
3 trlset.j ˙=joinK
4 trlset.m ˙=meetK
5 trlset.a A=AtomsK
6 trlset.h H=LHypK
7 elex KCKV
8 fveq2 k=KLHypk=LHypK
9 8 6 eqtr4di k=KLHypk=H
10 fveq2 k=KLTrnk=LTrnK
11 10 fveq1d k=KLTrnkw=LTrnKw
12 fveq2 k=KBasek=BaseK
13 12 1 eqtr4di k=KBasek=B
14 fveq2 k=KAtomsk=AtomsK
15 14 5 eqtr4di k=KAtomsk=A
16 fveq2 k=Kk=K
17 16 2 eqtr4di k=Kk=˙
18 17 breqd k=Kpkwp˙w
19 18 notbid k=K¬pkw¬p˙w
20 fveq2 k=Kmeetk=meetK
21 20 4 eqtr4di k=Kmeetk=˙
22 fveq2 k=Kjoink=joinK
23 22 3 eqtr4di k=Kjoink=˙
24 23 oveqd k=Kpjoinkfp=p˙fp
25 eqidd k=Kw=w
26 21 24 25 oveq123d k=Kpjoinkfpmeetkw=p˙fp˙w
27 26 eqeq2d k=Kx=pjoinkfpmeetkwx=p˙fp˙w
28 19 27 imbi12d k=K¬pkwx=pjoinkfpmeetkw¬p˙wx=p˙fp˙w
29 15 28 raleqbidv k=KpAtomsk¬pkwx=pjoinkfpmeetkwpA¬p˙wx=p˙fp˙w
30 13 29 riotaeqbidv k=KιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw=ιxB|pA¬p˙wx=p˙fp˙w
31 11 30 mpteq12dv k=KfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw=fLTrnKwιxB|pA¬p˙wx=p˙fp˙w
32 9 31 mpteq12dv k=KwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw=wHfLTrnKwιxB|pA¬p˙wx=p˙fp˙w
33 df-trl trL=kVwLHypkfLTrnkwιxBasek|pAtomsk¬pkwx=pjoinkfpmeetkw
34 32 33 6 mptfvmpt KVtrLK=wHfLTrnKwιxB|pA¬p˙wx=p˙fp˙w
35 7 34 syl KCtrLK=wHfLTrnKwιxB|pA¬p˙wx=p˙fp˙w