Metamath Proof Explorer


Theorem mpteq12dv

Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 16-Dec-2013) Remove dependency on ax-10 , ax-12 . (Revised by SN and Gino Giotto, 1-Dec-2023)

Ref Expression
Hypotheses mpteq12dv.1 φ A = C
mpteq12dv.2 φ B = D
Assertion mpteq12dv φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φ A = C
2 mpteq12dv.2 φ B = D
3 2 adantr φ x A B = D
4 1 3 mpteq12dva φ x A B = x C D