Metamath Proof Explorer


Theorem mpteq12dv

Description: An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 16-Dec-2013) Remove dependency on ax-10 , ax-12 . (Revised by SN and Gino Giotto, 1-Dec-2023)

Ref Expression
Hypotheses mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
mpteq12dv.2 ( 𝜑𝐵 = 𝐷 )
Assertion mpteq12dv ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
2 mpteq12dv.2 ( 𝜑𝐵 = 𝐷 )
3 2 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
4 1 3 mpteq12dva ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )