Metamath Proof Explorer


Theorem mpteq12dva

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017) Remove dependency on ax-10 , ax-12 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
mpteq12dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
Assertion mpteq12dva ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
2 mpteq12dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
3 2 eqeq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑦 = 𝐵𝑦 = 𝐷 ) )
4 3 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐴𝑦 = 𝐷 ) ) )
5 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐶 ) )
6 5 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐷 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
7 4 6 bitrd ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
8 7 opabbidv ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) } )
9 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
10 df-mpt ( 𝑥𝐶𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) }
11 8 9 10 3eqtr4g ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )