Metamath Proof Explorer


Theorem mpteq12dva

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017) Remove dependency on ax-10 , ax-12 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12dv.1 φA=C
mpteq12dva.2 φxAB=D
Assertion mpteq12dva φxAB=xCD

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φA=C
2 mpteq12dva.2 φxAB=D
3 2 eqeq2d φxAy=By=D
4 3 pm5.32da φxAy=BxAy=D
5 1 eleq2d φxAxC
6 5 anbi1d φxAy=DxCy=D
7 4 6 bitrd φxAy=BxCy=D
8 7 opabbidv φxy|xAy=B=xy|xCy=D
9 df-mpt xAB=xy|xAy=B
10 df-mpt xCD=xy|xCy=D
11 8 9 10 3eqtr4g φxAB=xCD