Metamath Proof Explorer


Theorem mpteq12dva

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017) Remove dependency on ax-10 , ax-12 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12dv.1 φ A = C
mpteq12dva.2 φ x A B = D
Assertion mpteq12dva φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φ A = C
2 mpteq12dva.2 φ x A B = D
3 2 eqeq2d φ x A y = B y = D
4 3 pm5.32da φ x A y = B x A y = D
5 1 eleq2d φ x A x C
6 5 anbi1d φ x A y = D x C y = D
7 4 6 bitrd φ x A y = B x C y = D
8 7 opabbidv φ x y | x A y = B = x y | x C y = D
9 df-mpt x A B = x y | x A y = B
10 df-mpt x C D = x y | x C y = D
11 8 9 10 3eqtr4g φ x A B = x C D