Metamath Proof Explorer


Theorem mpteq12dvaOLD

Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12dv.1 φA=C
mpteq12dva.2 φxAB=D
Assertion mpteq12dvaOLD φxAB=xCD

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φA=C
2 mpteq12dva.2 φxAB=D
3 1 alrimiv φxA=C
4 2 ralrimiva φxAB=D
5 mpteq12f xA=CxAB=DxAB=xCD
6 3 4 5 syl2anc φxAB=xCD