Metamath Proof Explorer


Theorem mpteq12f

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Assertion mpteq12f x A = C x A B = D x A B = x C D

Proof

Step Hyp Ref Expression
1 nfa1 x x A = C
2 nfra1 x x A B = D
3 1 2 nfan x x A = C x A B = D
4 nfv y x A = C x A B = D
5 rspa x A B = D x A B = D
6 5 eqeq2d x A B = D x A y = B y = D
7 6 pm5.32da x A B = D x A y = B x A y = D
8 sp x A = C A = C
9 8 eleq2d x A = C x A x C
10 9 anbi1d x A = C x A y = D x C y = D
11 7 10 sylan9bbr x A = C x A B = D x A y = B x C y = D
12 3 4 11 opabbid x A = C x A B = D x y | x A y = B = x y | x C y = D
13 df-mpt x A B = x y | x A y = B
14 df-mpt x C D = x y | x C y = D
15 12 13 14 3eqtr4g x A = C x A B = D x A B = x C D