Metamath Proof Explorer


Theorem opabbid

Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Hypotheses opabbid.1 x φ
opabbid.2 y φ
opabbid.3 φ ψ χ
Assertion opabbid φ x y | ψ = x y | χ

Proof

Step Hyp Ref Expression
1 opabbid.1 x φ
2 opabbid.2 y φ
3 opabbid.3 φ ψ χ
4 3 anbi2d φ z = x y ψ z = x y χ
5 2 4 exbid φ y z = x y ψ y z = x y χ
6 1 5 exbid φ x y z = x y ψ x y z = x y χ
7 6 abbidv φ z | x y z = x y ψ = z | x y z = x y χ
8 df-opab x y | ψ = z | x y z = x y ψ
9 df-opab x y | χ = z | x y z = x y χ
10 7 8 9 3eqtr4g φ x y | ψ = x y | χ