Metamath Proof Explorer


Theorem mpteq12f

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Assertion mpteq12f ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 nfa1 𝑥𝑥 𝐴 = 𝐶
2 nfra1 𝑥𝑥𝐴 𝐵 = 𝐷
3 1 2 nfan 𝑥 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 )
4 nfv 𝑦 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 )
5 rspa ( ( ∀ 𝑥𝐴 𝐵 = 𝐷𝑥𝐴 ) → 𝐵 = 𝐷 )
6 5 eqeq2d ( ( ∀ 𝑥𝐴 𝐵 = 𝐷𝑥𝐴 ) → ( 𝑦 = 𝐵𝑦 = 𝐷 ) )
7 6 pm5.32da ( ∀ 𝑥𝐴 𝐵 = 𝐷 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐴𝑦 = 𝐷 ) ) )
8 sp ( ∀ 𝑥 𝐴 = 𝐶𝐴 = 𝐶 )
9 8 eleq2d ( ∀ 𝑥 𝐴 = 𝐶 → ( 𝑥𝐴𝑥𝐶 ) )
10 9 anbi1d ( ∀ 𝑥 𝐴 = 𝐶 → ( ( 𝑥𝐴𝑦 = 𝐷 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
11 7 10 sylan9bbr ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
12 3 4 11 opabbid ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) } )
13 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
14 df-mpt ( 𝑥𝐶𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) }
15 12 13 14 3eqtr4g ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )