Metamath Proof Explorer


Theorem mpteq12dvaOLD

Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12dv.1
|- ( ph -> A = C )
mpteq12dva.2
|- ( ( ph /\ x e. A ) -> B = D )
Assertion mpteq12dvaOLD
|- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 mpteq12dv.1
 |-  ( ph -> A = C )
2 mpteq12dva.2
 |-  ( ( ph /\ x e. A ) -> B = D )
3 1 alrimiv
 |-  ( ph -> A. x A = C )
4 2 ralrimiva
 |-  ( ph -> A. x e. A B = D )
5 mpteq12f
 |-  ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) )
6 3 4 5 syl2anc
 |-  ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )