Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpteq12dv.1 | |- ( ph -> A = C ) |
|
mpteq12dva.2 | |- ( ( ph /\ x e. A ) -> B = D ) |
||
Assertion | mpteq12dvaOLD | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12dv.1 | |- ( ph -> A = C ) |
|
2 | mpteq12dva.2 | |- ( ( ph /\ x e. A ) -> B = D ) |
|
3 | 1 | alrimiv | |- ( ph -> A. x A = C ) |
4 | 2 | ralrimiva | |- ( ph -> A. x e. A B = D ) |
5 | mpteq12f | |- ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
|
6 | 3 4 5 | syl2anc | |- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |