Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Functions in maps-to notation
mpteq12dvaOLD
Metamath Proof Explorer
Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro , 26-Jan-2017) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mpteq12dv.1
⊢ ( 𝜑 → 𝐴 = 𝐶 )
mpteq12dva.2
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 )
Assertion
mpteq12dvaOLD
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )
Proof
Step
Hyp
Ref
Expression
1
mpteq12dv.1
⊢ ( 𝜑 → 𝐴 = 𝐶 )
2
mpteq12dva.2
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 )
3
1
alrimiv
⊢ ( 𝜑 → ∀ 𝑥 𝐴 = 𝐶 )
4
2
ralrimiva
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 )
5
mpteq12f
⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )
6
3 4 5
syl2anc
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )