Metamath Proof Explorer


Theorem mpteq12dvaOLD

Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
mpteq12dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
Assertion mpteq12dvaOLD ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 ( 𝜑𝐴 = 𝐶 )
2 mpteq12dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
3 1 alrimiv ( 𝜑 → ∀ 𝑥 𝐴 = 𝐶 )
4 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵 = 𝐷 )
5 mpteq12f ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )
6 3 4 5 syl2anc ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )