Metamath Proof Explorer


Definition df-trl

Description: Define trace of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Assertion df-trl trL = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrl trL
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vf 𝑓
8 cltrn LTrn
9 5 8 cfv ( LTrn ‘ 𝑘 )
10 3 cv 𝑤
11 10 9 cfv ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )
12 vx 𝑥
13 cbs Base
14 5 13 cfv ( Base ‘ 𝑘 )
15 vp 𝑝
16 catm Atoms
17 5 16 cfv ( Atoms ‘ 𝑘 )
18 15 cv 𝑝
19 cple le
20 5 19 cfv ( le ‘ 𝑘 )
21 18 10 20 wbr 𝑝 ( le ‘ 𝑘 ) 𝑤
22 21 wn ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤
23 12 cv 𝑥
24 cjn join
25 5 24 cfv ( join ‘ 𝑘 )
26 7 cv 𝑓
27 18 26 cfv ( 𝑓𝑝 )
28 18 27 25 co ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) )
29 cmee meet
30 5 29 cfv ( meet ‘ 𝑘 )
31 28 10 30 co ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 )
32 23 31 wceq 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 )
33 22 32 wi ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) )
34 33 15 17 wral 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) )
35 34 12 14 crio ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) )
36 7 11 35 cmpt ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) )
37 3 6 36 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) )
38 1 2 37 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) )
39 0 38 wceq trL = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) )