Step |
Hyp |
Ref |
Expression |
0 |
|
ctrl |
⊢ trL |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
cltrn |
⊢ LTrn |
9 |
5 8
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
10 |
3
|
cv |
⊢ 𝑤 |
11 |
10 9
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
12 |
|
vx |
⊢ 𝑥 |
13 |
|
cbs |
⊢ Base |
14 |
5 13
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
15 |
|
vp |
⊢ 𝑝 |
16 |
|
catm |
⊢ Atoms |
17 |
5 16
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
18 |
15
|
cv |
⊢ 𝑝 |
19 |
|
cple |
⊢ le |
20 |
5 19
|
cfv |
⊢ ( le ‘ 𝑘 ) |
21 |
18 10 20
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) 𝑤 |
22 |
21
|
wn |
⊢ ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 |
23 |
12
|
cv |
⊢ 𝑥 |
24 |
|
cjn |
⊢ join |
25 |
5 24
|
cfv |
⊢ ( join ‘ 𝑘 ) |
26 |
7
|
cv |
⊢ 𝑓 |
27 |
18 26
|
cfv |
⊢ ( 𝑓 ‘ 𝑝 ) |
28 |
18 27 25
|
co |
⊢ ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) |
29 |
|
cmee |
⊢ meet |
30 |
5 29
|
cfv |
⊢ ( meet ‘ 𝑘 ) |
31 |
28 10 30
|
co |
⊢ ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) |
32 |
23 31
|
wceq |
⊢ 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) |
33 |
22 32
|
wi |
⊢ ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) |
34 |
33 15 17
|
wral |
⊢ ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) |
35 |
34 12 14
|
crio |
⊢ ( ℩ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) |
36 |
7 11 35
|
cmpt |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) |
37 |
3 6 36
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) |
38 |
1 2 37
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) |
39 |
0 38
|
wceq |
⊢ trL = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑝 ∈ ( Atoms ‘ 𝑘 ) ( ¬ 𝑝 ( le ‘ 𝑘 ) 𝑤 → 𝑥 = ( ( 𝑝 ( join ‘ 𝑘 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) |