Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk1.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk1.s |
⊢ 𝑆 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑖 ∈ 𝑇 ( 𝑖 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑓 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑓 ∘ ◡ 𝐹 ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
⊢ 𝑂 = ( 𝑆 ‘ 𝐷 ) |
11 |
|
cdlemk1.u |
⊢ 𝑈 = ( 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝐷 ) ) ) ) ) ) |
12 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ∈ 𝑇 ) |
13 |
1 2 3 5 6 7 8 4 11
|
cdlemksv |
⊢ ( 𝐺 ∈ 𝑇 → ( 𝑈 ‘ 𝐺 ) = ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑈 ‘ 𝐺 ) = ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) ) |
15 |
14
|
eqcomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) = ( 𝑈 ‘ 𝐺 ) ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuel |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ) |
17 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
18 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
19 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk16a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ∈ 𝐴 ∧ ¬ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ≤ 𝑊 ) ) |
21 |
2 5 6 7
|
cdleme |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ∈ 𝐴 ∧ ¬ ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ≤ 𝑊 ) ) → ∃! 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) |
22 |
17 18 19 20 21
|
syl211anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ∃! 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑇 |
24 |
|
nfriota1 |
⊢ Ⅎ 𝑗 ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝐷 ) ) ) ) ) |
25 |
23 24
|
nfmpt |
⊢ Ⅎ 𝑗 ( 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝐷 ) ) ) ) ) ) |
26 |
11 25
|
nfcxfr |
⊢ Ⅎ 𝑗 𝑈 |
27 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐺 |
28 |
26 27
|
nffv |
⊢ Ⅎ 𝑗 ( 𝑈 ‘ 𝐺 ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑃 |
30 |
28 29
|
nffv |
⊢ Ⅎ 𝑗 ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) |
31 |
30
|
nfeq1 |
⊢ Ⅎ 𝑗 ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) |
32 |
|
fveq1 |
⊢ ( 𝑗 = ( 𝑈 ‘ 𝐺 ) → ( 𝑗 ‘ 𝑃 ) = ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝑗 = ( 𝑈 ‘ 𝐺 ) → ( ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ↔ ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) ) |
34 |
28 31 33
|
riota2f |
⊢ ( ( ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ∧ ∃! 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) → ( ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ↔ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
35 |
16 22 34
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ↔ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) = ( 𝑈 ‘ 𝐺 ) ) ) |
36 |
15 35
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝐷 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑂 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) ) ) |