Metamath Proof Explorer


Theorem cdleme

Description: Lemma E in Crawley p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013)

Ref Expression
Hypotheses cdleme.l = ( le ‘ 𝐾 )
cdleme.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdleme ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 cdleme.l = ( le ‘ 𝐾 )
2 cdleme.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdleme.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdleme.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 1 2 3 4 cdleme50ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
6 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → 𝑓𝑇 )
8 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → 𝑧𝑇 )
9 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
10 eqtr3 ( ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) → ( 𝑓𝑃 ) = ( 𝑧𝑃 ) )
11 10 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → ( 𝑓𝑃 ) = ( 𝑧𝑃 ) )
12 1 2 3 4 cdlemd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇𝑧𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑓𝑃 ) = ( 𝑧𝑃 ) ) → 𝑓 = 𝑧 )
13 6 7 8 9 11 12 syl311anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓𝑇𝑧𝑇 ) ∧ ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) ) → 𝑓 = 𝑧 )
14 13 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑓𝑇𝑧𝑇 ) → ( ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) ) )
15 14 ralrimivv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∀ 𝑓𝑇𝑧𝑇 ( ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) )
16 fveq1 ( 𝑓 = 𝑧 → ( 𝑓𝑃 ) = ( 𝑧𝑃 ) )
17 16 eqeq1d ( 𝑓 = 𝑧 → ( ( 𝑓𝑃 ) = 𝑄 ↔ ( 𝑧𝑃 ) = 𝑄 ) )
18 17 reu4 ( ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ↔ ( ∃ 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ∧ ∀ 𝑓𝑇𝑧𝑇 ( ( ( 𝑓𝑃 ) = 𝑄 ∧ ( 𝑧𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) ) )
19 5 15 18 sylanbrc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )