Metamath Proof Explorer


Theorem cdleme50ex

Description: Part of Lemma E in Crawley p. 113. TODO: fix comment. (Contributed by NM, 11-Apr-2013)

Ref Expression
Hypotheses cdleme.l = ( le ‘ 𝐾 )
cdleme.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdleme50ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 cdleme.l = ( le ‘ 𝐾 )
2 cdleme.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdleme.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdleme.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
8 eqid ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 )
9 eqid ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
10 eqid ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
11 eqid ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) )
12 5 1 6 7 2 3 8 9 10 11 4 cdleme50ltrn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ∈ 𝑇 )
13 5 1 6 7 2 3 8 9 10 11 cdleme17d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ‘ 𝑃 ) = 𝑄 )
14 fveq1 ( 𝑓 = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) → ( 𝑓𝑃 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ‘ 𝑃 ) )
15 14 eqeq1d ( 𝑓 = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) → ( ( 𝑓𝑃 ) = 𝑄 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ‘ 𝑃 ) = 𝑄 ) )
16 15 rspcev ( ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ∈ 𝑇 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) ‘ 𝑃 ) = 𝑄 ) → ∃ 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
17 12 13 16 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃ 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )