Metamath Proof Explorer


Theorem cdleme50ltrn

Description: Part of proof of Lemma E in Crawley p. 113. F is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef50.l = ( le ‘ 𝐾 )
cdlemef50.j = ( join ‘ 𝐾 )
cdlemef50.m = ( meet ‘ 𝐾 )
cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
cdleme50ltrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdleme50ltrn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )

Proof

Step Hyp Ref Expression
1 cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef50.l = ( le ‘ 𝐾 )
3 cdlemef50.j = ( join ‘ 𝐾 )
4 cdlemef50.m = ( meet ‘ 𝐾 )
5 cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 cdleme50ltrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 eqid ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
13 1 2 3 4 5 6 7 8 9 10 12 cdleme50ldil ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) )
14 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
15 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → 𝑑𝐴 )
16 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ¬ 𝑑 𝑊 )
17 1 2 3 4 5 6 7 8 9 10 cdleme50trn123 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴 ∧ ¬ 𝑑 𝑊 ) ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = 𝑈 )
18 14 15 16 17 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = 𝑈 )
19 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → 𝑒𝐴 )
20 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ¬ 𝑒 𝑊 )
21 1 2 3 4 5 6 7 8 9 10 cdleme50trn123 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑒𝐴 ∧ ¬ 𝑒 𝑊 ) ) → ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) = 𝑈 )
22 14 19 20 21 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) = 𝑈 )
23 18 22 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑑𝐴𝑒𝐴 ) ∧ ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) )
24 23 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑑𝐴𝑒𝐴 ) → ( ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) ) ) )
25 24 ralrimivv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∀ 𝑑𝐴𝑒𝐴 ( ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) ) )
26 2 3 4 5 6 12 11 isltrn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐹𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑑𝐴𝑒𝐴 ( ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) ) ) ) )
27 26 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑑𝐴𝑒𝐴 ( ( ¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊 ) → ( ( 𝑑 ( 𝐹𝑑 ) ) 𝑊 ) = ( ( 𝑒 ( 𝐹𝑒 ) ) 𝑊 ) ) ) ) )
28 13 25 27 mpbir2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )