Metamath Proof Explorer


Theorem simp12

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp12 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃𝜏 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝜑𝜓𝜒 ) → 𝜓 )
2 1 3ad2ant1 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃𝜏 ) → 𝜓 )