Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | reu4 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmo4.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 𝜑 ) ) | |
3 | 1 | rmo4 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
4 | 3 | anbi2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
5 | 2 4 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |