Metamath Proof Explorer


Theorem reu4

Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypothesis rmo4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion reu4 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 rmo4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )
3 1 rmo4 ( ∃* 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )
4 3 anbi2i ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
5 2 4 bitri ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )