| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmo4.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | reu3 | ⊢ ( ∃! 𝑥  ∈  𝐴 𝜑  ↔  ( ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 3 |  | equequ1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝑧  ↔  𝑦  =  𝑧 ) ) | 
						
							| 4 |  | equcom | ⊢ ( 𝑦  =  𝑧  ↔  𝑧  =  𝑦 ) | 
						
							| 5 | 3 4 | bitrdi | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝑧  ↔  𝑧  =  𝑦 ) ) | 
						
							| 6 | 1 5 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  𝑥  =  𝑧 )  ↔  ( 𝜓  →  𝑧  =  𝑦 ) ) ) | 
						
							| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑧  =  𝑦 ) ) | 
						
							| 8 | 7 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∃ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑧  =  𝑦 ) ) | 
						
							| 9 |  | equequ1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  =  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝜓  →  𝑧  =  𝑦 )  ↔  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑧  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 12 | 11 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑧  =  𝑦 )  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) | 
						
							| 13 | 8 12 | bitri | ⊢ ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) | 
						
							| 14 | 13 | anbi2i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑥  =  𝑧 ) )  ↔  ( ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 15 | 2 14 | bitri | ⊢ ( ∃! 𝑥  ∈  𝐴 𝜑  ↔  ( ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) |