Metamath Proof Explorer


Theorem simp33

Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011)

Ref Expression
Assertion simp33 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝜒𝜃𝜏 ) → 𝜏 )
2 1 3ad2ant3 ( ( 𝜑𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜏 )