Metamath Proof Explorer


Theorem ceilcld

Description: Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis ceilcld.1 φA
Assertion ceilcld φA

Proof

Step Hyp Ref Expression
1 ceilcld.1 φA
2 ceilcl AA
3 1 2 syl φA