Metamath Proof Explorer


Theorem ceqsex6v

Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011)

Ref Expression
Hypotheses ceqsex6v.1 AV
ceqsex6v.2 BV
ceqsex6v.3 CV
ceqsex6v.4 DV
ceqsex6v.5 EV
ceqsex6v.6 FV
ceqsex6v.7 x=Aφψ
ceqsex6v.8 y=Bψχ
ceqsex6v.9 z=Cχθ
ceqsex6v.10 w=Dθτ
ceqsex6v.11 v=Eτη
ceqsex6v.12 u=Fηζ
Assertion ceqsex6v xyzwvux=Ay=Bz=Cw=Dv=Eu=Fφζ

Proof

Step Hyp Ref Expression
1 ceqsex6v.1 AV
2 ceqsex6v.2 BV
3 ceqsex6v.3 CV
4 ceqsex6v.4 DV
5 ceqsex6v.5 EV
6 ceqsex6v.6 FV
7 ceqsex6v.7 x=Aφψ
8 ceqsex6v.8 y=Bψχ
9 ceqsex6v.9 z=Cχθ
10 ceqsex6v.10 w=Dθτ
11 ceqsex6v.11 v=Eτη
12 ceqsex6v.12 u=Fηζ
13 3anass x=Ay=Bz=Cw=Dv=Eu=Fφx=Ay=Bz=Cw=Dv=Eu=Fφ
14 13 3exbii wvux=Ay=Bz=Cw=Dv=Eu=Fφwvux=Ay=Bz=Cw=Dv=Eu=Fφ
15 19.42vvv wvux=Ay=Bz=Cw=Dv=Eu=Fφx=Ay=Bz=Cwvuw=Dv=Eu=Fφ
16 14 15 bitri wvux=Ay=Bz=Cw=Dv=Eu=Fφx=Ay=Bz=Cwvuw=Dv=Eu=Fφ
17 16 3exbii xyzwvux=Ay=Bz=Cw=Dv=Eu=Fφxyzx=Ay=Bz=Cwvuw=Dv=Eu=Fφ
18 7 anbi2d x=Aw=Dv=Eu=Fφw=Dv=Eu=Fψ
19 18 3exbidv x=Awvuw=Dv=Eu=Fφwvuw=Dv=Eu=Fψ
20 8 anbi2d y=Bw=Dv=Eu=Fψw=Dv=Eu=Fχ
21 20 3exbidv y=Bwvuw=Dv=Eu=Fψwvuw=Dv=Eu=Fχ
22 9 anbi2d z=Cw=Dv=Eu=Fχw=Dv=Eu=Fθ
23 22 3exbidv z=Cwvuw=Dv=Eu=Fχwvuw=Dv=Eu=Fθ
24 1 2 3 19 21 23 ceqsex3v xyzx=Ay=Bz=Cwvuw=Dv=Eu=Fφwvuw=Dv=Eu=Fθ
25 4 5 6 10 11 12 ceqsex3v wvuw=Dv=Eu=Fθζ
26 17 24 25 3bitri xyzwvux=Ay=Bz=Cw=Dv=Eu=Fφζ