Metamath Proof Explorer


Theorem chle0

Description: No Hilbert lattice element is smaller than zero. (Contributed by NM, 14-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chle0 ACA0A=0

Proof

Step Hyp Ref Expression
1 chsh ACAS
2 shle0 ASA0A=0
3 1 2 syl ACA0A=0