Metamath Proof Explorer


Theorem shle0

Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)

Ref Expression
Assertion shle0 ASA0A=0

Proof

Step Hyp Ref Expression
1 sh0le AS0A
2 1 biantrud ASA0A00A
3 eqss A=0A00A
4 2 3 bitr4di ASA0A=0