Metamath Proof Explorer


Theorem chlej12i

Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
chlub.1 CC
chlej12.4 DC
Assertion chlej12i ABCDACBD

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 chlub.1 CC
4 chlej12.4 DC
5 1 2 3 chlej1i ABACBC
6 3 4 2 chlej2i CDBCBD
7 5 6 sylan9ss ABCDACBD