Metamath Proof Explorer


Theorem chlej1i

Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
chlub.1 CC
Assertion chlej1i ABACBC

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 chlub.1 CC
4 1 chshii AS
5 2 chshii BS
6 3 chshii CS
7 4 5 6 shlej1i ABACBC