Metamath Proof Explorer


Theorem chseli

Description: Membership in subspace sum. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 AC
chjcl.2 BC
Assertion chseli CA+BxAyBC=x+y

Proof

Step Hyp Ref Expression
1 ch0le.1 AC
2 chjcl.2 BC
3 1 chshii AS
4 2 chshii BS
5 3 4 shseli CA+BxAyBC=x+y