Metamath Proof Explorer


Theorem cjdivd

Description: Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
readdd.2 φB
cjdivd.2 φB0
Assertion cjdivd φAB=AB

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 readdd.2 φB
3 cjdivd.2 φB0
4 cjdiv ABB0AB=AB
5 1 2 3 4 syl3anc φAB=AB