Metamath Proof Explorer


Theorem clmmul

Description: The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F=ScalarW
Assertion clmmul WCMod×=F

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 fvex BaseFV
3 eqid fld𝑠BaseF=fld𝑠BaseF
4 cnfldmul ×=fld
5 3 4 ressmulr BaseFV×=fld𝑠BaseF
6 2 5 ax-mp ×=fld𝑠BaseF
7 eqid BaseF=BaseF
8 1 7 clmsca WCModF=fld𝑠BaseF
9 8 fveq2d WCModF=fld𝑠BaseF
10 6 9 eqtr4id WCMod×=F