Metamath Proof Explorer


Theorem cnfn1dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnfn1dd.1 φ ψ χ
cnfn1dd.2 φ ψ ¬ χ θ
Assertion cnfn1dd φ ψ θ

Proof

Step Hyp Ref Expression
1 cnfn1dd.1 φ ψ χ
2 cnfn1dd.2 φ ψ ¬ χ θ
3 notnot χ ¬ ¬ χ
4 1 3 syl6 φ ψ ¬ ¬ χ
5 4 2 cnf1dd φ ψ θ