Metamath Proof Explorer


Theorem cnfn1dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnfn1dd.1
|- ( ph -> ( ps -> ch ) )
cnfn1dd.2
|- ( ph -> ( ps -> ( -. ch \/ th ) ) )
Assertion cnfn1dd
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 cnfn1dd.1
 |-  ( ph -> ( ps -> ch ) )
2 cnfn1dd.2
 |-  ( ph -> ( ps -> ( -. ch \/ th ) ) )
3 notnot
 |-  ( ch -> -. -. ch )
4 1 3 syl6
 |-  ( ph -> ( ps -> -. -. ch ) )
5 4 2 cnf1dd
 |-  ( ph -> ( ps -> th ) )