Metamath Proof Explorer


Theorem cnf1dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnf1dd.1
|- ( ph -> ( ps -> -. ch ) )
cnf1dd.2
|- ( ph -> ( ps -> ( ch \/ th ) ) )
Assertion cnf1dd
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 cnf1dd.1
 |-  ( ph -> ( ps -> -. ch ) )
2 cnf1dd.2
 |-  ( ph -> ( ps -> ( ch \/ th ) ) )
3 1 2 jcad
 |-  ( ph -> ( ps -> ( -. ch /\ ( ch \/ th ) ) ) )
4 df-or
 |-  ( ( ch \/ th ) <-> ( -. ch -> th ) )
5 pm3.35
 |-  ( ( -. ch /\ ( -. ch -> th ) ) -> th )
6 4 5 sylan2b
 |-  ( ( -. ch /\ ( ch \/ th ) ) -> th )
7 3 6 syl6
 |-  ( ph -> ( ps -> th ) )