Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnf1dd.1 | |- ( ph -> ( ps -> -. ch ) ) |
|
| cnf1dd.2 | |- ( ph -> ( ps -> ( ch \/ th ) ) ) |
||
| Assertion | cnf1dd | |- ( ph -> ( ps -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnf1dd.1 | |- ( ph -> ( ps -> -. ch ) ) |
|
| 2 | cnf1dd.2 | |- ( ph -> ( ps -> ( ch \/ th ) ) ) |
|
| 3 | 1 2 | jcad | |- ( ph -> ( ps -> ( -. ch /\ ( ch \/ th ) ) ) ) |
| 4 | df-or | |- ( ( ch \/ th ) <-> ( -. ch -> th ) ) |
|
| 5 | pm3.35 | |- ( ( -. ch /\ ( -. ch -> th ) ) -> th ) |
|
| 6 | 4 5 | sylan2b | |- ( ( -. ch /\ ( ch \/ th ) ) -> th ) |
| 7 | 3 6 | syl6 | |- ( ph -> ( ps -> th ) ) |