Metamath Proof Explorer


Theorem cnf2dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnf2dd.1
|- ( ph -> ( ps -> -. th ) )
cnf2dd.2
|- ( ph -> ( ps -> ( ch \/ th ) ) )
Assertion cnf2dd
|- ( ph -> ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 cnf2dd.1
 |-  ( ph -> ( ps -> -. th ) )
2 cnf2dd.2
 |-  ( ph -> ( ps -> ( ch \/ th ) ) )
3 pm1.4
 |-  ( ( ch \/ th ) -> ( th \/ ch ) )
4 2 3 syl6
 |-  ( ph -> ( ps -> ( th \/ ch ) ) )
5 1 4 cnf1dd
 |-  ( ph -> ( ps -> ch ) )