Metamath Proof Explorer


Theorem cnf2dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnf2dd.1 φ ψ ¬ θ
cnf2dd.2 φ ψ χ θ
Assertion cnf2dd φ ψ χ

Proof

Step Hyp Ref Expression
1 cnf2dd.1 φ ψ ¬ θ
2 cnf2dd.2 φ ψ χ θ
3 pm1.4 χ θ θ χ
4 2 3 syl6 φ ψ θ χ
5 1 4 cnf1dd φ ψ χ