Metamath Proof Explorer


Theorem cnf1dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnf1dd.1 ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
cnf1dd.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
Assertion cnf1dd ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 cnf1dd.1 ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
2 cnf1dd.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 1 2 jcad ( 𝜑 → ( 𝜓 → ( ¬ 𝜒 ∧ ( 𝜒𝜃 ) ) ) )
4 df-or ( ( 𝜒𝜃 ) ↔ ( ¬ 𝜒𝜃 ) )
5 pm3.35 ( ( ¬ 𝜒 ∧ ( ¬ 𝜒𝜃 ) ) → 𝜃 )
6 4 5 sylan2b ( ( ¬ 𝜒 ∧ ( 𝜒𝜃 ) ) → 𝜃 )
7 3 6 syl6 ( 𝜑 → ( 𝜓𝜃 ) )