Metamath Proof Explorer


Theorem cnfn2dd

Description: A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses cnfn2dd.1 φ ψ θ
cnfn2dd.2 φ ψ χ ¬ θ
Assertion cnfn2dd φ ψ χ

Proof

Step Hyp Ref Expression
1 cnfn2dd.1 φ ψ θ
2 cnfn2dd.2 φ ψ χ ¬ θ
3 notnot θ ¬ ¬ θ
4 1 3 syl6 φ ψ ¬ ¬ θ
5 4 2 cnf2dd φ ψ χ