Metamath Proof Explorer


Theorem cnnm

Description: The norm of the normed subcomplex vector space of complex numbers is the absolute value. (Contributed by NM, 12-Jan-2008) (Revised by AV, 9-Oct-2021)

Ref Expression
Hypothesis cnrnvc.c C=ringLModfld
Assertion cnnm normC=abs

Proof

Step Hyp Ref Expression
1 cnrnvc.c C=ringLModfld
2 rlmnm normfld=normringLModfld
3 cnfldnm abs=normfld
4 1 fveq2i normC=normringLModfld
5 2 3 4 3eqtr4ri normC=abs