Metamath Proof Explorer


Theorem cnfldnm

Description: The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion cnfldnm abs=normfld

Proof

Step Hyp Ref Expression
1 0cn 0
2 eqid abs=abs
3 2 cnmetdval x0xabs0=x0
4 1 3 mpan2 xxabs0=x0
5 subid1 xx0=x
6 5 fveq2d xx0=x
7 4 6 eqtrd xxabs0=x
8 7 mpteq2ia xxabs0=xx
9 eqid normfld=normfld
10 cnfldbas =Basefld
11 cnfld0 0=0fld
12 cnfldds abs=distfld
13 9 10 11 12 nmfval normfld=xxabs0
14 absf abs:
15 14 a1i abs:
16 15 feqmptd abs=xx
17 16 mptru abs=xx
18 8 13 17 3eqtr4ri abs=normfld