| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
|- 0 e. CC |
| 2 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 3 |
2
|
cnmetdval |
|- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 4 |
1 3
|
mpan2 |
|- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 5 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
| 6 |
5
|
fveq2d |
|- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 7 |
4 6
|
eqtrd |
|- ( x e. CC -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
| 8 |
7
|
mpteq2ia |
|- ( x e. CC |-> ( x ( abs o. - ) 0 ) ) = ( x e. CC |-> ( abs ` x ) ) |
| 9 |
|
eqid |
|- ( norm ` CCfld ) = ( norm ` CCfld ) |
| 10 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 11 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 12 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
| 13 |
9 10 11 12
|
nmfval |
|- ( norm ` CCfld ) = ( x e. CC |-> ( x ( abs o. - ) 0 ) ) |
| 14 |
|
absf |
|- abs : CC --> RR |
| 15 |
14
|
a1i |
|- ( T. -> abs : CC --> RR ) |
| 16 |
15
|
feqmptd |
|- ( T. -> abs = ( x e. CC |-> ( abs ` x ) ) ) |
| 17 |
16
|
mptru |
|- abs = ( x e. CC |-> ( abs ` x ) ) |
| 18 |
8 13 17
|
3eqtr4ri |
|- abs = ( norm ` CCfld ) |