Metamath Proof Explorer


Theorem mpteq2ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq2ia.1
|- ( x e. A -> B = C )
Assertion mpteq2ia
|- ( x e. A |-> B ) = ( x e. A |-> C )

Proof

Step Hyp Ref Expression
1 mpteq2ia.1
 |-  ( x e. A -> B = C )
2 1 adantl
 |-  ( ( T. /\ x e. A ) -> B = C )
3 2 mpteq2dva
 |-  ( T. -> ( x e. A |-> B ) = ( x e. A |-> C ) )
4 3 mptru
 |-  ( x e. A |-> B ) = ( x e. A |-> C )