Metamath Proof Explorer


Theorem mpteq2ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq2ia.1 x A B = C
Assertion mpteq2ia x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2ia.1 x A B = C
2 1 adantl x A B = C
3 2 mpteq2dva x A B = x A C
4 3 mptru x A B = x A C