Metamath Proof Explorer


Theorem mpteq2dva

Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq2dva.1 φ x A B = C
Assertion mpteq2dva φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2dva.1 φ x A B = C
2 eqidd φ A = A
3 2 1 mpteq12dva φ x A B = x A C