Metamath Proof Explorer


Theorem mpteq2dvaOLD

Description: Obsolete version of mpteq2dva as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq2dva.1 φ x A B = C
Assertion mpteq2dvaOLD φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2dva.1 φ x A B = C
2 nfv x φ
3 2 1 mpteq2da φ x A B = x A C