Metamath Proof Explorer


Theorem mpteq2dvaOLD

Description: Obsolete version of mpteq2dva as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion mpteq2dvaOLD ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
2 nfv 𝑥 𝜑
3 2 1 mpteq2da ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )