Metamath Proof Explorer


Theorem mpteq2da

Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013) (Revised by Mario Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq2da.1 𝑥 𝜑
mpteq2da.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion mpteq2da ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq2da.1 𝑥 𝜑
2 mpteq2da.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
3 eqidd ( 𝜑𝐴 = 𝐴 )
4 1 3 2 mpteq12da ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )