Metamath Proof Explorer


Theorem mpteq2da

Description: Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013) (Revised by Mario Carneiro, 16-Dec-2013) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq2da.1 x φ
mpteq2da.2 φ x A B = C
Assertion mpteq2da φ x A B = x A C

Proof

Step Hyp Ref Expression
1 mpteq2da.1 x φ
2 mpteq2da.2 φ x A B = C
3 eqidd φ A = A
4 1 3 2 mpteq12da φ x A B = x A C