| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mpteq12da.1 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							mpteq12da.2 | 
							⊢ ( 𝜑  →  𝐴  =  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							mpteq12da.3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  =  𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 5 | 
							
								3
							 | 
							eqeq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  =  𝐵  ↔  𝑦  =  𝐷 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm5.32da | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐷 ) ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐶 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi1d | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐷 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) ) )  | 
						
						
							| 10 | 
							
								1 4 9
							 | 
							opabbid | 
							⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) } )  | 
						
						
							| 11 | 
							
								
							 | 
							df-mpt | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 ) }  | 
						
						
							| 12 | 
							
								
							 | 
							df-mpt | 
							⊢ ( 𝑥  ∈  𝐶  ↦  𝐷 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) }  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							3eqtr4g | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐶  ↦  𝐷 ) )  |