| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mpteq12da.1 | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							mpteq12da.2 | 
							 |-  ( ph -> A = C )  | 
						
						
							| 3 | 
							
								
							 | 
							mpteq12da.3 | 
							 |-  ( ( ph /\ x e. A ) -> B = D )  | 
						
						
							| 4 | 
							
								
							 | 
							nfv | 
							 |-  F/ y ph  | 
						
						
							| 5 | 
							
								3
							 | 
							eqeq2d | 
							 |-  ( ( ph /\ x e. A ) -> ( y = B <-> y = D ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm5.32da | 
							 |-  ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = D ) ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. A <-> x e. C ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi1d | 
							 |-  ( ph -> ( ( x e. A /\ y = D ) <-> ( x e. C /\ y = D ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bitrd | 
							 |-  ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) )  | 
						
						
							| 10 | 
							
								1 4 9
							 | 
							opabbid | 
							 |-  ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } ) | 
						
						
							| 11 | 
							
								
							 | 
							df-mpt | 
							 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } | 
						
						
							| 12 | 
							
								
							 | 
							df-mpt | 
							 |-  ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) } | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							3eqtr4g | 
							 |-  ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )  |