Metamath Proof Explorer


Theorem mpteq12da

Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mpteq12da.1
|- F/ x ph
mpteq12da.2
|- ( ph -> A = C )
mpteq12da.3
|- ( ( ph /\ x e. A ) -> B = D )
Assertion mpteq12da
|- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 mpteq12da.1
 |-  F/ x ph
2 mpteq12da.2
 |-  ( ph -> A = C )
3 mpteq12da.3
 |-  ( ( ph /\ x e. A ) -> B = D )
4 1 2 alrimi
 |-  ( ph -> A. x A = C )
5 1 3 ralrimia
 |-  ( ph -> A. x e. A B = D )
6 mpteq12f
 |-  ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) )
7 4 5 6 syl2anc
 |-  ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )