Metamath Proof Explorer


Theorem mpteq12df

Description: An equality inference for the maps-to notation. Compare mpteq12dv . (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses mpteq12df.1
|- F/ x ph
mpteq12df.2
|- ( ph -> A = C )
mpteq12df.3
|- ( ph -> B = D )
Assertion mpteq12df
|- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 mpteq12df.1
 |-  F/ x ph
2 mpteq12df.2
 |-  ( ph -> A = C )
3 mpteq12df.3
 |-  ( ph -> B = D )
4 nfv
 |-  F/ y ph
5 2 eleq2d
 |-  ( ph -> ( x e. A <-> x e. C ) )
6 3 eqeq2d
 |-  ( ph -> ( y = B <-> y = D ) )
7 5 6 anbi12d
 |-  ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) )
8 1 4 7 opabbid
 |-  ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } )
9 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
10 df-mpt
 |-  ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) }
11 8 9 10 3eqtr4g
 |-  ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )