Metamath Proof Explorer


Theorem mpteq12df

Description: An equality inference for the maps-to notation. Compare mpteq12dv . (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 11-Dec-2016) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12df.1
|- F/ x ph
mpteq12df.2
|- ( ph -> A = C )
mpteq12df.3
|- ( ph -> B = D )
Assertion mpteq12df
|- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 mpteq12df.1
 |-  F/ x ph
2 mpteq12df.2
 |-  ( ph -> A = C )
3 mpteq12df.3
 |-  ( ph -> B = D )
4 3 adantr
 |-  ( ( ph /\ x e. A ) -> B = D )
5 1 2 4 mpteq12da
 |-  ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) )