Metamath Proof Explorer


Theorem mpteq2dva

Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypothesis mpteq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
Assertion mpteq2dva ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq2dva.1 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
2 eqidd ( 𝜑𝐴 = 𝐴 )
3 2 1 mpteq12dva ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )